• Here are five productive activities to include in your morning routine as a computer science student:

    1. Review Goals and Plan Your Day
    Spend 5-10 minutes reviewing your academic goals or tasks for the day. Use tools like a planner, calendar, or task management apps (e.g., Notion, Todoist).
    Prioritize tasks: Focus on assignments, projects, or topics that are due soon or require more effort.
    2. Practice Problem-Solving
    Dedicate 15-20 minutes to solving a coding problem or reviewing algorithms and data structures on platforms like LeetCode, HackerRank, or Codeforces.
    This helps improve your analytical skills and keeps your programming knowledge sharp.
    3. Read or Watch Educational Content
    Read an article, blog post, or research paper related to computer science (e.g., AI, cybersecurity, or software development).
    Watch a quick tutorial or lecture snippet on a concept you're currently studying to gain additional insight.
    4. Work on Personal Projects
    Spend 20-30 minutes coding or brainstorming ideas for your personal project. Consistent progress on personal projects strengthens your portfolio and builds practical skills.
    Focus on implementing or debugging small features to avoid burnout.
    5. Take Care of Your Health
    Physical Health: Start with light exercise or stretching to boost energy and focus.
    Mental Health: Practice mindfulness or journaling for 5-10 minutes to reduce stress and increase concentration for your studies.
    Here are five productive activities to include in your morning routine as a computer science student: 1. Review Goals and Plan Your Day Spend 5-10 minutes reviewing your academic goals or tasks for the day. Use tools like a planner, calendar, or task management apps (e.g., Notion, Todoist). Prioritize tasks: Focus on assignments, projects, or topics that are due soon or require more effort. 2. Practice Problem-Solving Dedicate 15-20 minutes to solving a coding problem or reviewing algorithms and data structures on platforms like LeetCode, HackerRank, or Codeforces. This helps improve your analytical skills and keeps your programming knowledge sharp. 3. Read or Watch Educational Content Read an article, blog post, or research paper related to computer science (e.g., AI, cybersecurity, or software development). Watch a quick tutorial or lecture snippet on a concept you're currently studying to gain additional insight. 4. Work on Personal Projects Spend 20-30 minutes coding or brainstorming ideas for your personal project. Consistent progress on personal projects strengthens your portfolio and builds practical skills. Focus on implementing or debugging small features to avoid burnout. 5. Take Care of Your Health Physical Health: Start with light exercise or stretching to boost energy and focus. Mental Health: Practice mindfulness or journaling for 5-10 minutes to reduce stress and increase concentration for your studies.
    Like
    1
    0 Comments 0 Shares 2K Views 0 Reviews
  • What's Cyber security
    What's Cyber security
    0 Comments 0 Shares 909 Views 0 Reviews
  • Guarding Your Digital Life: Essential Data Protection Tips #DataProtection, #CyberSecurity, #DigitalSafety, #PrivacyMatters, #StaySafeOnline, #ProtectYourData, #OnlineSecurity, #DataPrivacy, #CyberAwareness, #SecureYourData
    Guarding Your Digital Life: Essential Data Protection Tips #DataProtection, #CyberSecurity, #DigitalSafety, #PrivacyMatters, #StaySafeOnline, #ProtectYourData, #OnlineSecurity, #DataPrivacy, #CyberAwareness, #SecureYourData
    Like
    1
    3 Comments 0 Shares 9K Views 0 Reviews



  • Data Understanding


    Data Science Methodology

    Essentially, the data understanding section of the data science methodology answers the question:
    Is the data that you collected representative of the problem to be solved?
    . In order to understand the data related to congestive heart failure admissions,
    descriptive statistics needed to be run against the data columns that would become variables in the model.
    1. First, these statistics included hurst, univariates, and statistics on each variable, such as mean, median, minimum, maximum, and standard deviation.
    2. Second, pairwise correlations were used, to see how closely certain variables were related, and which ones, if any, were very highly correlated, meaning that they would be essentially redundant, thus making only one relevant for modeling.
    3. Third, histograms of the variables were examined to understand their distributions.

    Histograms are a good way to understand how values or a variable are distributed, and which sorts of data preparation may be needed to make the variable more useful in a model.
    For example, for a categorical variable that has too many distinct values to be informative in a model, the histogram would help them decide how to consolidate those values.
    The univariates, statistics, and histograms are also used to assess data quality. From the information provided, certain values can be re-coded or perhaps even dropped if necessary, such as when a certain variable has missing values.
    The question then becomes, does "missing" mean anything?
    Sometimes a missing value might mean "no", or "0" (zero), or at other times it simply means "we don't know" or, if a variable contains invalid or misleading values, such as a numeric variable called "age" that contains 0 to 100 and also 999, where that "triple-9" actually means "missing",
    but would be treated as a valid value unless we corrected it.
    Initially, the meaning of congestive heart failure admission was decided on the basis of a primary diagnosis of congestive heart failure.
    But working through the data understanding stage revealed that the initial definition was not capturing all of the congestive heart failure admissions that were expected, based on clinical experience.
    This meant looping back to the data collection stage and adding secondary and tertiary diagnoses, and building a more comprehensive definition of congestive heart failure admission.
    This is just one example of the interactive processes in the methodology.
    The more one works with the problem and the data, the more one learns and therefore the more refinement that can be done within the model, ultimately leading to a better solution to the problem.
    This ends the Data Understanding section of this course.




    Okiliong
    What are some potential challenges or issues that can arise during the data understanding stage?


    During the data understanding stage, there are several potential challenges or issues that can arise. Some of them include:

    1.Insufficient or incomplete data: The data collected may not be sufficient or may have missing values, which can affect the accuracy and reliability of the analysis.

    2.Data quality issues: The data may contain errors, outliers, or inconsistencies that need to be addressed before proceeding with the analysis.

    3.Data bias: The data may be biased towards certain groups or may not be representative of the population, leading to biased results and conclusions.

    4.Data privacy and security: Handling sensitive or confidential data requires ensuring proper security measures are in place to protect the data and comply with privacy regulations.

    5.Data compatibility: Data from different sources may have different formats, structures, or units, making it challenging to integrate and analyze them together.

    6.Data interpretation: Understanding the meaning and context of the data can be complex, especially when dealing with complex variables or domain-specific terminology.

    7.Data volume and scalability: Large datasets can pose challenges in terms of storage, processing power, and computational resources required for analysis.

    8.Stakeholder involvement: Involving stakeholders and subject matter experts in the data understanding stage can be challenging, especially if there are communication gaps or conflicting priorities.

    It's important to address these challenges and issues during the data understanding stage to ensure the accuracy and reliability of the subsequent analysis and modeling steps.


    Data Understanding Data Science Methodology Essentially, the data understanding section of the data science methodology answers the question: Is the data that you collected representative of the problem to be solved? . In order to understand the data related to congestive heart failure admissions, descriptive statistics needed to be run against the data columns that would become variables in the model. 1. First, these statistics included hurst, univariates, and statistics on each variable, such as mean, median, minimum, maximum, and standard deviation. 2. Second, pairwise correlations were used, to see how closely certain variables were related, and which ones, if any, were very highly correlated, meaning that they would be essentially redundant, thus making only one relevant for modeling. 3. Third, histograms of the variables were examined to understand their distributions. Histograms are a good way to understand how values or a variable are distributed, and which sorts of data preparation may be needed to make the variable more useful in a model. For example, for a categorical variable that has too many distinct values to be informative in a model, the histogram would help them decide how to consolidate those values. The univariates, statistics, and histograms are also used to assess data quality. From the information provided, certain values can be re-coded or perhaps even dropped if necessary, such as when a certain variable has missing values. The question then becomes, does "missing" mean anything? Sometimes a missing value might mean "no", or "0" (zero), or at other times it simply means "we don't know" or, if a variable contains invalid or misleading values, such as a numeric variable called "age" that contains 0 to 100 and also 999, where that "triple-9" actually means "missing", but would be treated as a valid value unless we corrected it. Initially, the meaning of congestive heart failure admission was decided on the basis of a primary diagnosis of congestive heart failure. But working through the data understanding stage revealed that the initial definition was not capturing all of the congestive heart failure admissions that were expected, based on clinical experience. This meant looping back to the data collection stage and adding secondary and tertiary diagnoses, and building a more comprehensive definition of congestive heart failure admission. This is just one example of the interactive processes in the methodology. The more one works with the problem and the data, the more one learns and therefore the more refinement that can be done within the model, ultimately leading to a better solution to the problem. This ends the Data Understanding section of this course. ​ Okiliong What are some potential challenges or issues that can arise during the data understanding stage? During the data understanding stage, there are several potential challenges or issues that can arise. Some of them include: 1.Insufficient or incomplete data: The data collected may not be sufficient or may have missing values, which can affect the accuracy and reliability of the analysis. 2.Data quality issues: The data may contain errors, outliers, or inconsistencies that need to be addressed before proceeding with the analysis. 3.Data bias: The data may be biased towards certain groups or may not be representative of the population, leading to biased results and conclusions. 4.Data privacy and security: Handling sensitive or confidential data requires ensuring proper security measures are in place to protect the data and comply with privacy regulations. 5.Data compatibility: Data from different sources may have different formats, structures, or units, making it challenging to integrate and analyze them together. 6.Data interpretation: Understanding the meaning and context of the data can be complex, especially when dealing with complex variables or domain-specific terminology. 7.Data volume and scalability: Large datasets can pose challenges in terms of storage, processing power, and computational resources required for analysis. 8.Stakeholder involvement: Involving stakeholders and subject matter experts in the data understanding stage can be challenging, especially if there are communication gaps or conflicting priorities. It's important to address these challenges and issues during the data understanding stage to ensure the accuracy and reliability of the subsequent analysis and modeling steps.
    Love
    1
    3 Comments 0 Shares 3K Views 0 Reviews
  • As more industries adopt blockchain, we can expect to see increased innovation and collaboration in this space. Staying ahead of the curve means embracing these technological advancements and exploring how they can be integrated into existing systems to enhance security and efficiency.
    As more industries adopt blockchain, we can expect to see increased innovation and collaboration in this space. Staying ahead of the curve means embracing these technological advancements and exploring how they can be integrated into existing systems to enhance security and efficiency.
    Discover How Blockchain is Revolutionizing Data Security
    Stay Ahead of the Curve with the Latest in Tech! Discover How Blockchain is Revolutionizing Data Security In today's fast-paced technological landscape, staying ahead of the curve is crucial for both individuals and organizations. One of the most groundbreaking advancements in recent years is the advent of blockchain technology. Initially popularized by cryptocurrencies like Bitcoin,...
    Love
    1
    0 Comments 0 Shares 2K Views 0 Reviews
  • Adding a watermark to Microsoft documents helps protect and brand your content. You can easily add a watermark by going to the Design tab, selecting Watermark, and choosing a pre-designed watermark or creating a custom one.
    #MicrosoftWord #Watermark #DocumentSecurity #Branding #ContentProtection #OfficeTips
    Adding a watermark to Microsoft documents helps protect and brand your content. You can easily add a watermark by going to the Design tab, selecting Watermark, and choosing a pre-designed watermark or creating a custom one. #MicrosoftWord #Watermark #DocumentSecurity #Branding #ContentProtection #OfficeTips
    0 Comments 0 Shares 5K Views 145 0 Reviews