• "Average Speed and Velocity: #PhysicsBasics #Speed #Velocity #Motion #Kinematics #Distance #Displacement #Time #VectorQuantities #PhysicsTutorial"
    "Average Speed and Velocity: #PhysicsBasics #Speed #Velocity #Motion #Kinematics #Distance #Displacement #Time #VectorQuantities #PhysicsTutorial"
    Like
    1
    1 Comentários 1 Compartilhamentos 4KB Visualizações 70 0 Anterior
  • "Displacement in Physics: #PhysicsBasics #Displacement #VectorQuantities #ScienceExplained #PhysicsTutorial"
    "Displacement in Physics: #PhysicsBasics #Displacement #VectorQuantities #ScienceExplained #PhysicsTutorial"
    Like
    1
    0 Comentários 0 Compartilhamentos 3KB Visualizações 40 0 Anterior
  • LATERAL AND SIDE DISPLACEMENT
    LATERAL AND SIDE DISPLACEMENT
    Love
    1
    0 Comentários 0 Compartilhamentos 807 Visualizações 0 Anterior
  • LATERAL AND SIDE DISPLACEMENT
    LATERAL AND SIDE DISPLACEMENT
    Love
    1
    0 Comentários 0 Compartilhamentos 829 Visualizações 0 Anterior
  • CALCULATION INVOLVING DISPLACEMENT OF AN OBJECT
    CALCULATION INVOLVING DISPLACEMENT OF AN OBJECT
    Like
    1
    0 Comentários 0 Compartilhamentos 901 Visualizações 0 Anterior
  • In Advanced Level Maths, the equations of linear motion are:

    1. Constant Acceleration:
    - v = u + at
    - s = ut + (1/2)at^2
    - v^2 = u^2 + 2as

    Where:
    v = final velocity
    u = initial velocity
    a = acceleration
    t = time
    s = displacement

    1. Uniform Motion:
    - s = vt
    - v = s/t

    Where:
    s = distance
    v = constant velocity
    t = time

    1. Motion with Variable Acceleration:
    - dv/dt = a(t)
    - v = ∫a(t)dt
    - s = ∫v(t)dt

    Where:
    a(t) is the acceleration function
    v(t) is the velocity function
    s(t) is the position function

    These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    In Advanced Level Maths, the equations of linear motion are: 1. Constant Acceleration: - v = u + at - s = ut + (1/2)at^2 - v^2 = u^2 + 2as Where: v = final velocity u = initial velocity a = acceleration t = time s = displacement 1. Uniform Motion: - s = vt - v = s/t Where: s = distance v = constant velocity t = time 1. Motion with Variable Acceleration: - dv/dt = a(t) - v = ∫a(t)dt - s = ∫v(t)dt Where: a(t) is the acceleration function v(t) is the velocity function s(t) is the position function These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    0 Comentários 0 Compartilhamentos 2KB Visualizações 0 Anterior
  • In Advanced Level Maths, the equations of linear motion are:

    1. Constant Acceleration:
    - v = u + at
    - s = ut + (1/2)at^2
    - v^2 = u^2 + 2as

    Where:
    v = final velocity
    u = initial velocity
    a = acceleration
    t = time
    s = displacement

    1. Uniform Motion:
    - s = vt
    - v = s/t

    Where:
    s = distance
    v = constant velocity
    t = time

    1. Motion with Variable Acceleration:
    - dv/dt = a(t)
    - v = ∫a(t)dt
    - s = ∫v(t)dt

    Where:
    a(t) is the acceleration function
    v(t) is the velocity function
    s(t) is the position function

    These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    In Advanced Level Maths, the equations of linear motion are: 1. Constant Acceleration: - v = u + at - s = ut + (1/2)at^2 - v^2 = u^2 + 2as Where: v = final velocity u = initial velocity a = acceleration t = time s = displacement 1. Uniform Motion: - s = vt - v = s/t Where: s = distance v = constant velocity t = time 1. Motion with Variable Acceleration: - dv/dt = a(t) - v = ∫a(t)dt - s = ∫v(t)dt Where: a(t) is the acceleration function v(t) is the velocity function s(t) is the position function These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    0 Comentários 0 Compartilhamentos 2KB Visualizações 0 Anterior
  • In Advanced Level Maths, the equations of linear motion are:

    1. Constant Acceleration:
    - v = u + at
    - s = ut + (1/2)at^2
    - v^2 = u^2 + 2as

    Where:
    v = final velocity
    u = initial velocity
    a = acceleration
    t = time
    s = displacement

    1. Uniform Motion:
    - s = vt
    - v = s/t

    Where:
    s = distance
    v = constant velocity
    t = time

    1. Motion with Variable Acceleration:
    - dv/dt = a(t)
    - v = ∫a(t)dt
    - s = ∫v(t)dt

    Where:
    a(t) is the acceleration function
    v(t) is the velocity function
    s(t) is the position function

    These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    In Advanced Level Maths, the equations of linear motion are: 1. Constant Acceleration: - v = u + at - s = ut + (1/2)at^2 - v^2 = u^2 + 2as Where: v = final velocity u = initial velocity a = acceleration t = time s = displacement 1. Uniform Motion: - s = vt - v = s/t Where: s = distance v = constant velocity t = time 1. Motion with Variable Acceleration: - dv/dt = a(t) - v = ∫a(t)dt - s = ∫v(t)dt Where: a(t) is the acceleration function v(t) is the velocity function s(t) is the position function These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    0 Comentários 0 Compartilhamentos 2KB Visualizações 0 Anterior