• PLASMA PHYSICS LECTURE 7 | Wave function, phase velocity, group velocity, plasma frequency. |
    PLASMA PHYSICS LECTURE 7 | Wave function, phase velocity, group velocity, plasma frequency. |
    Like
    2
    0 التعليقات 0 المشاركات 543 مشاهدة 0 معاينة
  • "Average Speed and Velocity: #PhysicsBasics #Speed #Velocity #Motion #Kinematics #Distance #Displacement #Time #VectorQuantities #PhysicsTutorial"
    "Average Speed and Velocity: #PhysicsBasics #Speed #Velocity #Motion #Kinematics #Distance #Displacement #Time #VectorQuantities #PhysicsTutorial"
    Like
    1
    1 التعليقات 1 المشاركات 1048 مشاهدة 70 0 معاينة
  • CALCULATIONS ON RELATIVE VELOCITY
    CALCULATIONS ON RELATIVE VELOCITY
    0 التعليقات 0 المشاركات 398 مشاهدة 0 معاينة
  • In Advanced Level Maths, the equations of linear motion are:

    1. Constant Acceleration:
    - v = u + at
    - s = ut + (1/2)at^2
    - v^2 = u^2 + 2as

    Where:
    v = final velocity
    u = initial velocity
    a = acceleration
    t = time
    s = displacement

    1. Uniform Motion:
    - s = vt
    - v = s/t

    Where:
    s = distance
    v = constant velocity
    t = time

    1. Motion with Variable Acceleration:
    - dv/dt = a(t)
    - v = ∫a(t)dt
    - s = ∫v(t)dt

    Where:
    a(t) is the acceleration function
    v(t) is the velocity function
    s(t) is the position function

    These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    In Advanced Level Maths, the equations of linear motion are: 1. Constant Acceleration: - v = u + at - s = ut + (1/2)at^2 - v^2 = u^2 + 2as Where: v = final velocity u = initial velocity a = acceleration t = time s = displacement 1. Uniform Motion: - s = vt - v = s/t Where: s = distance v = constant velocity t = time 1. Motion with Variable Acceleration: - dv/dt = a(t) - v = ∫a(t)dt - s = ∫v(t)dt Where: a(t) is the acceleration function v(t) is the velocity function s(t) is the position function These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    0 التعليقات 0 المشاركات 518 مشاهدة 0 معاينة
  • In Advanced Level Maths, the equations of linear motion are:

    1. Constant Acceleration:
    - v = u + at
    - s = ut + (1/2)at^2
    - v^2 = u^2 + 2as

    Where:
    v = final velocity
    u = initial velocity
    a = acceleration
    t = time
    s = displacement

    1. Uniform Motion:
    - s = vt
    - v = s/t

    Where:
    s = distance
    v = constant velocity
    t = time

    1. Motion with Variable Acceleration:
    - dv/dt = a(t)
    - v = ∫a(t)dt
    - s = ∫v(t)dt

    Where:
    a(t) is the acceleration function
    v(t) is the velocity function
    s(t) is the position function

    These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    In Advanced Level Maths, the equations of linear motion are: 1. Constant Acceleration: - v = u + at - s = ut + (1/2)at^2 - v^2 = u^2 + 2as Where: v = final velocity u = initial velocity a = acceleration t = time s = displacement 1. Uniform Motion: - s = vt - v = s/t Where: s = distance v = constant velocity t = time 1. Motion with Variable Acceleration: - dv/dt = a(t) - v = ∫a(t)dt - s = ∫v(t)dt Where: a(t) is the acceleration function v(t) is the velocity function s(t) is the position function These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    0 التعليقات 0 المشاركات 523 مشاهدة 0 معاينة
  • In Advanced Level Maths, the equations of linear motion are:

    1. Constant Acceleration:
    - v = u + at
    - s = ut + (1/2)at^2
    - v^2 = u^2 + 2as

    Where:
    v = final velocity
    u = initial velocity
    a = acceleration
    t = time
    s = displacement

    1. Uniform Motion:
    - s = vt
    - v = s/t

    Where:
    s = distance
    v = constant velocity
    t = time

    1. Motion with Variable Acceleration:
    - dv/dt = a(t)
    - v = ∫a(t)dt
    - s = ∫v(t)dt

    Where:
    a(t) is the acceleration function
    v(t) is the velocity function
    s(t) is the position function

    These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    In Advanced Level Maths, the equations of linear motion are: 1. Constant Acceleration: - v = u + at - s = ut + (1/2)at^2 - v^2 = u^2 + 2as Where: v = final velocity u = initial velocity a = acceleration t = time s = displacement 1. Uniform Motion: - s = vt - v = s/t Where: s = distance v = constant velocity t = time 1. Motion with Variable Acceleration: - dv/dt = a(t) - v = ∫a(t)dt - s = ∫v(t)dt Where: a(t) is the acceleration function v(t) is the velocity function s(t) is the position function These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    0 التعليقات 0 المشاركات 520 مشاهدة 0 معاينة