• "Average Speed and Velocity: #PhysicsBasics #Speed #Velocity #Motion #Kinematics #Distance #Displacement #Time #VectorQuantities #PhysicsTutorial"
    "Average Speed and Velocity: #PhysicsBasics #Speed #Velocity #Motion #Kinematics #Distance #Displacement #Time #VectorQuantities #PhysicsTutorial"
    Like
    1
    1 Commenti 1 condivisioni 4K Views 70 0 Anteprima
  • "Displacement in Physics: #PhysicsBasics #Displacement #VectorQuantities #ScienceExplained #PhysicsTutorial"
    "Displacement in Physics: #PhysicsBasics #Displacement #VectorQuantities #ScienceExplained #PhysicsTutorial"
    Like
    1
    0 Commenti 0 condivisioni 3K Views 40 0 Anteprima
  • LATERAL AND SIDE DISPLACEMENT
    LATERAL AND SIDE DISPLACEMENT
    Love
    1
    0 Commenti 0 condivisioni 748 Views 0 Anteprima
  • LATERAL AND SIDE DISPLACEMENT
    LATERAL AND SIDE DISPLACEMENT
    Love
    1
    0 Commenti 0 condivisioni 771 Views 0 Anteprima
  • CALCULATION INVOLVING DISPLACEMENT OF AN OBJECT
    CALCULATION INVOLVING DISPLACEMENT OF AN OBJECT
    Like
    1
    0 Commenti 0 condivisioni 842 Views 0 Anteprima
  • In Advanced Level Maths, the equations of linear motion are:

    1. Constant Acceleration:
    - v = u + at
    - s = ut + (1/2)at^2
    - v^2 = u^2 + 2as

    Where:
    v = final velocity
    u = initial velocity
    a = acceleration
    t = time
    s = displacement

    1. Uniform Motion:
    - s = vt
    - v = s/t

    Where:
    s = distance
    v = constant velocity
    t = time

    1. Motion with Variable Acceleration:
    - dv/dt = a(t)
    - v = ∫a(t)dt
    - s = ∫v(t)dt

    Where:
    a(t) is the acceleration function
    v(t) is the velocity function
    s(t) is the position function

    These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    In Advanced Level Maths, the equations of linear motion are: 1. Constant Acceleration: - v = u + at - s = ut + (1/2)at^2 - v^2 = u^2 + 2as Where: v = final velocity u = initial velocity a = acceleration t = time s = displacement 1. Uniform Motion: - s = vt - v = s/t Where: s = distance v = constant velocity t = time 1. Motion with Variable Acceleration: - dv/dt = a(t) - v = ∫a(t)dt - s = ∫v(t)dt Where: a(t) is the acceleration function v(t) is the velocity function s(t) is the position function These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    0 Commenti 0 condivisioni 2K Views 0 Anteprima
  • In Advanced Level Maths, the equations of linear motion are:

    1. Constant Acceleration:
    - v = u + at
    - s = ut + (1/2)at^2
    - v^2 = u^2 + 2as

    Where:
    v = final velocity
    u = initial velocity
    a = acceleration
    t = time
    s = displacement

    1. Uniform Motion:
    - s = vt
    - v = s/t

    Where:
    s = distance
    v = constant velocity
    t = time

    1. Motion with Variable Acceleration:
    - dv/dt = a(t)
    - v = ∫a(t)dt
    - s = ∫v(t)dt

    Where:
    a(t) is the acceleration function
    v(t) is the velocity function
    s(t) is the position function

    These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    In Advanced Level Maths, the equations of linear motion are: 1. Constant Acceleration: - v = u + at - s = ut + (1/2)at^2 - v^2 = u^2 + 2as Where: v = final velocity u = initial velocity a = acceleration t = time s = displacement 1. Uniform Motion: - s = vt - v = s/t Where: s = distance v = constant velocity t = time 1. Motion with Variable Acceleration: - dv/dt = a(t) - v = ∫a(t)dt - s = ∫v(t)dt Where: a(t) is the acceleration function v(t) is the velocity function s(t) is the position function These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    0 Commenti 0 condivisioni 2K Views 0 Anteprima
  • In Advanced Level Maths, the equations of linear motion are:

    1. Constant Acceleration:
    - v = u + at
    - s = ut + (1/2)at^2
    - v^2 = u^2 + 2as

    Where:
    v = final velocity
    u = initial velocity
    a = acceleration
    t = time
    s = displacement

    1. Uniform Motion:
    - s = vt
    - v = s/t

    Where:
    s = distance
    v = constant velocity
    t = time

    1. Motion with Variable Acceleration:
    - dv/dt = a(t)
    - v = ∫a(t)dt
    - s = ∫v(t)dt

    Where:
    a(t) is the acceleration function
    v(t) is the velocity function
    s(t) is the position function

    These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    In Advanced Level Maths, the equations of linear motion are: 1. Constant Acceleration: - v = u + at - s = ut + (1/2)at^2 - v^2 = u^2 + 2as Where: v = final velocity u = initial velocity a = acceleration t = time s = displacement 1. Uniform Motion: - s = vt - v = s/t Where: s = distance v = constant velocity t = time 1. Motion with Variable Acceleration: - dv/dt = a(t) - v = ∫a(t)dt - s = ∫v(t)dt Where: a(t) is the acceleration function v(t) is the velocity function s(t) is the position function These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    0 Commenti 0 condivisioni 2K Views 0 Anteprima