• Intro to Classes and Objects python Show drafts
    Classes: The Blueprints Imagine you're building a house. You wouldn't just start hammering and sawing without a plan, right? In Python, classes act like blueprints for creating objects. They define the characteristics (data) and functionalities (methods) that similar objects will have. Objects: Instances of the Blueprint Once you have a class, you can create individual objects from it. These...
    0 Kommentare 0 Anteile 3KB Ansichten 0 Vorschau
  • Constructors, Interfaces, and Memory
    While Python has some similarities to other languages regarding these concepts, it also has some unique approaches. Constructors In Python: Unlike Java or C++, Python doesn't have a designated constructor keyword. Instead, it uses a special method called __init__(double underscore init) that gets called automatically whenever you create an object from a class. Purpose: Similar to other...
    0 Kommentare 0 Anteile 3KB Ansichten 0 Vorschau
  • Like
    Love
    2
    0 Kommentare 1 Anteile 1KB Ansichten 57 0 Vorschau
  • Like
    1
    0 Kommentare 0 Anteile 451 Ansichten 0 Vorschau
  • https://youtu.be/DcXmBwWlA9U?si=XSvHsrNuoJTGY3kh
    https://youtu.be/DcXmBwWlA9U?si=XSvHsrNuoJTGY3kh
    0 Kommentare 0 Anteile 205 Ansichten 0 Vorschau
  • Like
    1
    0 Kommentare 0 Anteile 2KB Ansichten 0 Vorschau
  • The equation of a trajectory depends on the specific context and type of trajectory. Here are a few examples:

    1. Projectile Motion:
    - Horizontal trajectory: x(t) = v0x*t
    - Vertical trajectory: y(t) = v0y*t - (1/2)_g_t^2
    - Parabolic trajectory: y(x) = ax^2 + bx + c
    2. Circular Motion:
    - x(t) = r*cos(ωt + θ)
    - y(t) = r*sin(ωt + θ)
    3. Elliptical Motion:
    - x(t) = a*cos(ωt + θ)
    - y(t) = b*sin(ωt + θ)
    4. Parametric Equations:
    - x(t) = f(t)
    - y(t) = g(t)

    Where:

    - x and y are the coordinates of the trajectory
    - v0x and v0y are the initial velocities
    - g is the acceleration due to gravity
    - r is the radius
    - ω is the angular frequency
    - θ is the phase angle
    - a and b are the semi-axes of the ellipse
    - f and g are functions of time
    The equation of a trajectory depends on the specific context and type of trajectory. Here are a few examples: 1. Projectile Motion: - Horizontal trajectory: x(t) = v0x*t - Vertical trajectory: y(t) = v0y*t - (1/2)_g_t^2 - Parabolic trajectory: y(x) = ax^2 + bx + c 2. Circular Motion: - x(t) = r*cos(ωt + θ) - y(t) = r*sin(ωt + θ) 3. Elliptical Motion: - x(t) = a*cos(ωt + θ) - y(t) = b*sin(ωt + θ) 4. Parametric Equations: - x(t) = f(t) - y(t) = g(t) Where: - x and y are the coordinates of the trajectory - v0x and v0y are the initial velocities - g is the acceleration due to gravity - r is the radius - ω is the angular frequency - θ is the phase angle - a and b are the semi-axes of the ellipse - f and g are functions of time
    Like
    1
    0 Kommentare 0 Anteile 632 Ansichten 0 Vorschau
  • 0 Kommentare 0 Anteile 262 Ansichten 100 0 Vorschau
  • In Advanced Level Maths, the equations of linear motion are:

    1. Constant Acceleration:
    - v = u + at
    - s = ut + (1/2)at^2
    - v^2 = u^2 + 2as

    Where:
    v = final velocity
    u = initial velocity
    a = acceleration
    t = time
    s = displacement

    1. Uniform Motion:
    - s = vt
    - v = s/t

    Where:
    s = distance
    v = constant velocity
    t = time

    1. Motion with Variable Acceleration:
    - dv/dt = a(t)
    - v = ∫a(t)dt
    - s = ∫v(t)dt

    Where:
    a(t) is the acceleration function
    v(t) is the velocity function
    s(t) is the position function

    These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    In Advanced Level Maths, the equations of linear motion are: 1. Constant Acceleration: - v = u + at - s = ut + (1/2)at^2 - v^2 = u^2 + 2as Where: v = final velocity u = initial velocity a = acceleration t = time s = displacement 1. Uniform Motion: - s = vt - v = s/t Where: s = distance v = constant velocity t = time 1. Motion with Variable Acceleration: - dv/dt = a(t) - v = ∫a(t)dt - s = ∫v(t)dt Where: a(t) is the acceleration function v(t) is the velocity function s(t) is the position function These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    0 Kommentare 0 Anteile 2KB Ansichten 0 Vorschau
  • In Advanced Level Maths, the equations of linear motion are:

    1. Constant Acceleration:
    - v = u + at
    - s = ut + (1/2)at^2
    - v^2 = u^2 + 2as

    Where:
    v = final velocity
    u = initial velocity
    a = acceleration
    t = time
    s = displacement

    1. Uniform Motion:
    - s = vt
    - v = s/t

    Where:
    s = distance
    v = constant velocity
    t = time

    1. Motion with Variable Acceleration:
    - dv/dt = a(t)
    - v = ∫a(t)dt
    - s = ∫v(t)dt

    Where:
    a(t) is the acceleration function
    v(t) is the velocity function
    s(t) is the position function

    These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    In Advanced Level Maths, the equations of linear motion are: 1. Constant Acceleration: - v = u + at - s = ut + (1/2)at^2 - v^2 = u^2 + 2as Where: v = final velocity u = initial velocity a = acceleration t = time s = displacement 1. Uniform Motion: - s = vt - v = s/t Where: s = distance v = constant velocity t = time 1. Motion with Variable Acceleration: - dv/dt = a(t) - v = ∫a(t)dt - s = ∫v(t)dt Where: a(t) is the acceleration function v(t) is the velocity function s(t) is the position function These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.
    0 Kommentare 0 Anteile 2KB Ansichten 0 Vorschau