0 Commentarios
0 Acciones
3K Views
0 Vista previa
Directorio
Descubre nuevas personas, crear nuevas conexiones y hacer nuevos amigos
-
Please log in to like, share and comment!
-
Constructors, Interfaces, and MemoryWhile Python has some similarities to other languages regarding these concepts, it also has some unique approaches. Constructors In Python: Unlike Java or C++, Python doesn't have a designated constructor keyword. Instead, it uses a special method called __init__(double underscore init) that gets called automatically whenever you create an object from a class. Purpose: Similar to other...0 Commentarios 0 Acciones 3K Views 0 Vista previa
-
-
-
https://youtu.be/DcXmBwWlA9U?si=XSvHsrNuoJTGY3kh0 Commentarios 0 Acciones 215 Views 0 Vista previa
-
-
The equation of a trajectory depends on the specific context and type of trajectory. Here are a few examples:
1. Projectile Motion:
- Horizontal trajectory: x(t) = v0x*t
- Vertical trajectory: y(t) = v0y*t - (1/2)_g_t^2
- Parabolic trajectory: y(x) = ax^2 + bx + c
2. Circular Motion:
- x(t) = r*cos(ωt + θ)
- y(t) = r*sin(ωt + θ)
3. Elliptical Motion:
- x(t) = a*cos(ωt + θ)
- y(t) = b*sin(ωt + θ)
4. Parametric Equations:
- x(t) = f(t)
- y(t) = g(t)
Where:
- x and y are the coordinates of the trajectory
- v0x and v0y are the initial velocities
- g is the acceleration due to gravity
- r is the radius
- ω is the angular frequency
- θ is the phase angle
- a and b are the semi-axes of the ellipse
- f and g are functions of timeThe equation of a trajectory depends on the specific context and type of trajectory. Here are a few examples: 1. Projectile Motion: - Horizontal trajectory: x(t) = v0x*t - Vertical trajectory: y(t) = v0y*t - (1/2)_g_t^2 - Parabolic trajectory: y(x) = ax^2 + bx + c 2. Circular Motion: - x(t) = r*cos(ωt + θ) - y(t) = r*sin(ωt + θ) 3. Elliptical Motion: - x(t) = a*cos(ωt + θ) - y(t) = b*sin(ωt + θ) 4. Parametric Equations: - x(t) = f(t) - y(t) = g(t) Where: - x and y are the coordinates of the trajectory - v0x and v0y are the initial velocities - g is the acceleration due to gravity - r is the radius - ω is the angular frequency - θ is the phase angle - a and b are the semi-axes of the ellipse - f and g are functions of time -
0 Commentarios 0 Acciones 272 Views 100 0 Vista previa
-
In Advanced Level Maths, the equations of linear motion are:
1. Constant Acceleration:
- v = u + at
- s = ut + (1/2)at^2
- v^2 = u^2 + 2as
Where:
v = final velocity
u = initial velocity
a = acceleration
t = time
s = displacement
1. Uniform Motion:
- s = vt
- v = s/t
Where:
s = distance
v = constant velocity
t = time
1. Motion with Variable Acceleration:
- dv/dt = a(t)
- v = ∫a(t)dt
- s = ∫v(t)dt
Where:
a(t) is the acceleration function
v(t) is the velocity function
s(t) is the position function
These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.In Advanced Level Maths, the equations of linear motion are: 1. Constant Acceleration: - v = u + at - s = ut + (1/2)at^2 - v^2 = u^2 + 2as Where: v = final velocity u = initial velocity a = acceleration t = time s = displacement 1. Uniform Motion: - s = vt - v = s/t Where: s = distance v = constant velocity t = time 1. Motion with Variable Acceleration: - dv/dt = a(t) - v = ∫a(t)dt - s = ∫v(t)dt Where: a(t) is the acceleration function v(t) is the velocity function s(t) is the position function These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.0 Commentarios 0 Acciones 2K Views 0 Vista previa -
In Advanced Level Maths, the equations of linear motion are:
1. Constant Acceleration:
- v = u + at
- s = ut + (1/2)at^2
- v^2 = u^2 + 2as
Where:
v = final velocity
u = initial velocity
a = acceleration
t = time
s = displacement
1. Uniform Motion:
- s = vt
- v = s/t
Where:
s = distance
v = constant velocity
t = time
1. Motion with Variable Acceleration:
- dv/dt = a(t)
- v = ∫a(t)dt
- s = ∫v(t)dt
Where:
a(t) is the acceleration function
v(t) is the velocity function
s(t) is the position function
These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.In Advanced Level Maths, the equations of linear motion are: 1. Constant Acceleration: - v = u + at - s = ut + (1/2)at^2 - v^2 = u^2 + 2as Where: v = final velocity u = initial velocity a = acceleration t = time s = displacement 1. Uniform Motion: - s = vt - v = s/t Where: s = distance v = constant velocity t = time 1. Motion with Variable Acceleration: - dv/dt = a(t) - v = ∫a(t)dt - s = ∫v(t)dt Where: a(t) is the acceleration function v(t) is the velocity function s(t) is the position function These equations describe linear motion in one dimension. In two or three dimensions, vector equations are used to describe motion.0 Commentarios 0 Acciones 2K Views 0 Vista previa